Integral University Lucknow Study & Evaluation Scheme B. Tech. (Biomedical Engineering) (w. e. f. 2021-22)

YE	AR I,										Semester	r-I
s.	. Subject			Periods			Evaluation Scheme				Subject	
No.	Code	Category	Subject						Sessio	onal	Exam.	Total
				L	Т	Р	С	СТ	ТА	Total	ESE	
			Theor	y Subj	ects							
1	PY 101	BS	Physics	3	1	0	4	40	20	60	40	100
2	LN101	HM	Basic Professional Communication	2	1	0	3	40	20	60	40	100
3	MT101	BS	Mathematics I	3	1	0	4	40	20	60	40	100
4	EE103	ESA	Basic Electrical Engg.	3	1	0	4	40	20	60	40	100
5	EC101	ESA	Basic Electronics	3	1	0	4	40	20	60	40	100
6	**BE102/ BE103	ESA	Remedial Mathematics/ Remedial Biology	2	1	0	0**	40	20	60	40	100
			Practica	al Subj	ects							
7	PY102	BS	Physics Lab	0	0	2	1	40	20	60	40	100
8	EE104	ESA	Electrical Engg. Lab	0	0	2	1	40	20	60	40	100
9	ME103	ESA	Engg Graphics	0	1	2	1	40	20	60	40	100
10	ME104	ESA	Workshop Practice	0	0	2	2	40	20	60	40	100
			Total	14	6	8	24	360	180	540	360	900
** A fourt	non-credit	foundation	n course. Candidate has to	pass tl	he cou	irse	by s	ecurir	ng at le	east 50 %	marks u	ip to

VEADT

T-Tutorial **P-**Practical **C**-Credits **CT-**Class Test **TA-**Teacher Assessment **L**-Lecture Sessional Total (CA) = Class Test + Teacher Assessment

Subject Total = Sessional Total (CA) + End Semester Examination (ESE)

BS- Basic Science **DC-** Departmental Core

HM- Humanities **OE-** Open Elective

DE- Departmental Elective ESA- Engineering Sciences & Arts (Foundation Course & Engineering Courses)

REMEDIAL MATHEMATICS BE102 (w.e.f. session 2021-2022)

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	2	1	0	0

Course Objective: This is an introductory course in mathematics. This subject deals with the introduction to Partial fraction,Logarithm, matrices and Determinant, Analytical geometry, Calculus, differential equation and Laplace transform. Upon completion of the course the student shall be able to:

- 1. Know the theory and their application in Biomedical Engineering
- 2. Solve the different types of problems by applying theory
- 3. Appreciate the important application of mathematics in Biomedical Engineering

UNIT I	Algebra:	8					
	Determinants, Properties of determinants, solution of simultaneous						
	equations by Cramer's rule, matrices, properties of matrices, solution of						
	simultaneous equations by matrices, applications of determinants and						
	matrices.						
	Measures of Central value: Objectives and pre-requisites of an ideal						
	measure, mean, mode and median.						
UNIT II	Trigonometry:	8					
	Measurement of angle, T-ratio, addition, subtraction and transformation						
	formulae, T-ratio of multiple, submultiple, allied and certain angles,						
	application of logarithms.						
UNIT III	Analytical Plain Geometry:	8					
	Certain co-ordinates, distance between two points, area of triangle,						
	locus of a point, straight line, slope and intercept form, double intercept						
	form normal (perpendicular form), slope-point and two-point form,						
	general equation of first degree.						
UNIT IV	Calculus:	8					
	Differential: Limits and functions, definition of differential coefficient,						
	differentiation of standard functions, including function of a function						
	(chain rule).						
	Integral: Integration as inverse of differentiation indefinite integrals of						
	standard form, integration by parts.						

BOOKS RECOMENDED

- 1. A textbook of Mathematics for XI-XII Students, NCERT Publication Vol. I-IV.
- 2. Loney, S.L "Plane Trigonometry" AITBS Publishers.
- 3. Loney, S.L "The elements of coordinate geometry" AITBS Publishrs.
- 4. Gupta S.P. Statistical Methods, Sultan Chand and Co., New Delhi.
- 5. Narayan Shanti, Integral calculus, Sultan Chand & Co.
- 6. Prasad Gorakh Text book on differential calculus, Pothishala Pvt. Ltd., Allahabad.
- 7. Narayan Shanti, Differential calculus, Shyamlal Charitable Trust, New Delhi.
- 8. Prasad Gorakh Text book on integral calculus, Pothishala Pvt. Ltd., Allahabad.

REMEDIAL BIOLOGY BE103 (w.e.f. session 2021-2022)

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	2	1	0	0

Course Objective: To learn and understand the components of living world, structure and functional system ofplant and animal kingdom.

Upon completion of the course, the student shall be able to:

- 1. Know the classification and salient features of five kingdoms of life
- 2. Understand the basic components of anatomy & physiology of plant
- 3. Know understand the basic components of anatomy & physiology animal with special reference to human

Living world:	8				
Definition and characters of living organisms					
Diversity in the living world					
Binomial nomenclature					
Five kingdoms of life and basis of classification. Salient features of					
Monera, Potista, Fungi, Animalia and Plantae, Virus.					
Cell - The unit of life					
Structure and functions of cell and cell organelles. Cell division					
Tissues					
Definition, types of tissues, location and functions.					
Body fluids and circulation	8				
Composition of blood, blood groups, coagulation of blood					
Composition and functions of lymph					
Human circulatory system					
Structure of human heart and blood vessels					
Digestion and Absorption					
Human alimentary canal and digestive glands					
Role of digestive enzymes					
Breathing and respiration	8				
Human respiratory system					
Mechanism of breathing and its regulation					
Excretory products and their elimination					
Modes of excretion					
Human excretory system- structure and function					
Neural control and coordination	8				
Definition and classification of nervous system					
Structure of a neuron					
Chemical coordination and regulation					
Endocrine glands and their secretions Functions of hormones secreted by endocrine glands					
	Living world: Definition and characters of living organisms Diversity in the living world Binomial nomenclature Five kingdoms of life and basis of classification. Salient features of Monera, Potista, Fungi, Animalia and Plantae, Virus. Cell - The unit of life Structure and functions of cell and cell organelles. Cell division Tissues Definition, types of tissues, location and functions. Body fluids and circulation Composition of blood, blood groups, coagulation of blood Composition and functions of lymph Human circulatory system Structure of human heart and blood vessels Digestion and Absorption Human alimentary canal and digestive glands Role of digestive enzymes Breathing and respiration Human respiratory system Mechanism of breathing and its regulation Excretory products and their elimination Modes of excretion Human excretory system- structure and function Poleinition and classification of nervous system Structure of a neuron Chemical coordination Definition and classification of nervous system Structure of a neuron				

BOOKS RECOMMENDED

- 1. Text book of Biology by S. B. Gokhale
- 2. A Text book of Biology by Dr. Thulajappa and Dr. Seetaram.
- 3. Marshall & Williams "Text Book of Zoology" CBS Publishers & Distrubutors, Delhi.
- 4. Text book of Biology by B.V. Sreenivasa Naidu
- 5. A Text book of Biology by Naidu and Murthy.

Integral University LucknowStudy & Evaluation Scheme B. Tech. (Biomedical Engineering) (w. e. f. 2020-21)

YEAR I,

Semester-II

S.	Subject	Catagory	Subject		Periods Evaluation Scheme				ne	Subject		
No.	Code	Category	Subject						Sessio	onal	Exam.	Total
				L	Т	Р	С	СТ	ТА	Total	ESE	
			Theor	ry Subj	ects							
1	CH 101	BS	Chemistry	3	1	0	4	40	20	60	40	100
2	ES 101	ESA	Environmental Studies	2	1	0	3	40	20	60	40	100
3	MT 112	BS	Mathematics II	3	1	0	4	40	20	60	40	100
4	ME 101	ESA	Basic Mechanical Engg.	3	1	0	4	40	20	60	40	100
5	CS 101	ESA	Computer Programming	3	1	0	4	40	20	60	40	100
			Practic	al Subj	ects							
6	CH 102	BS	Chemistry Lab	0	0	2	1	40	20	60	40	100
7	ME 102	ESA	Mechanical Engg. Lab	0	0	2	1	40	20	60	40	100
8	LN 151	HM	Professional Communication Lab	0	1	2	2	40	20	60	40	100
9	CS 102	ESA	Computer Programming Lab	0	0	2	1	40	20	60	40	100
			Total	14	6	8	24	360	180	540	360	900

L-Lecture	T-Tutorial	P- Practical	C -Credits	CT-Class Test
	TA-Teacher As	sessment		

Sessional Total (CA) = Class Test + Teacher Assessment

Subject Total = Sessional Total (CA) + End Semester Examination (ESE)

BS- Basic Science **DC-** Departmental Core

HM- Humanities OE- Open Elective

DE- Departmental Elective **ESA-** Engineering Sciences & Arts (Foundation Course & Engineering Course

STUDY & EVALUATION SCHEME B. TECH. Biomedical Engineering (with effect from 2021-2022)

2	nd Year				-	,				3	8 rd Sen	nester			
G	Course	Subject		D		100	la	Evaluation Schem Sessional (CA) (ESE		cheme	Sub				
s. No	Course	Code	Name of the Subject		Periods		I CHUUS			tillus			Sessional (CA) (F		Sub. Total
				L	T	P	С	СТ	TA	Total					
1.	DC	EC231	Fundamental of Biomedical Electronics	3	1	0	4	40	20	60	40	100			
2.	DC	EC232	Fundamentals of Circuits and Networks	3	1	0	4	40	20	60	40	100			
3.	DC	MT201	Engineering Mathematics-III	3	1	0	4	40	20	60	40	100			
4	DC	BE272	Human Anatomy and Physiology for Engineers	3	1	0	4	40	20	60	40	100			
5.	ESA	CS203	Cyber Law & Information Security	2	1	0	3	40	20	60	40	100			
6	DC	BE273	Biochemical Analysis and Techniques	3	1	0	4	40	20	60	40	100			
7.	ESA	ES202	Disaster Management	2	1	-	3	40	20	60	40	100			
8.	HM	BM226	Human Values &Professional Ethics	3	-	-	*	40*	20*	60*	40*	100*			
			Practicals				-		-						
9.	ESA	BE274	Human Anatomy and physiology Lab	0	0	2	1	40	20	60	40	100			
10.	DC	EC233	Electronics Circuits Lab	0	0	2	1	40	20	60	40	100			
11.	DC	EC249	Circuit Theory Lab	0	0	2	1	40	20	60	40	100			
				22	7	6	29	400	200	600	400	1000			
* A	non-cred	it founda	ation course. Candidate has to pas	ss tł	ne	co	ur	se by	y sec	curing	at leas	t 50 %			
ma	rks up to f	ourth ser	mester												

 $\begin{array}{ccc} L-Lecture & T-Tutorial & P-Practical & C-Credits & CT-Class Test \\ TA-Teacher Assessment & \end{array}$

Sessional Total (CA) = Class Test + Teacher Assessment

Subject Total = Sessional Total (CA) + End Semester Examination (ESE)

BS – Basic Sciences, DC – Departmental Core, HM – Humanities, OE – Open Elective,

 \mathbf{DE} – Departmental Elective,

ESA – Engineering Sciences & Arts (Foundation Course & Engineering Courses)

FUNDAMENTAL OF BIOMEDICAL ELECTRONICS

EC231

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	3	1	0	4

Objective: To introduce the basics of various electronic components used for the construction of medical devices.

UNIT I	Diodes Review of PN Junction Diode- characteristics and application Special purpose diodes: Tunnel diode, Varactor Diode, Schottkey Diode, Light Emitting Diode, Laser Diode and photo voltaic cell, with their working principle and characteristics.	8
UNIT II	Bipolar Junction Transistor Review of Configuration and V I characteristics of BJT, Small signal and low frequency analysis of BJT amplifier, Darlington pair, cascode amplifier Classification of Amplifiers: Class A,B,C amplifiers, Audio Amplifiers, Power amplifier.	8
UNIT III	 MOSFET : Review of device structure, operation & V I characteristic. Ohmic and saturation region equations. Classification of MOS (NMOS, PMOS, CMOS) principle of working and comparison, MOSFET as an amplifier and switch, biasing of MOS amplifier circuit, CS, CG, CD configuration using NMOS, frequency response of a single stage CS amplifier. 	8
UNIT IV	Feedback Amplifiers: Basic concept of feedback, General Characteristics of negative feedback amplifiers, Classification of feedback, Voltage/Current shunt and series feedback, stability of feedback amplifiers, Multistage Amplifiers.	8
UNIT V	Oscillators & Voltage Regulator Oscillators; Condition for oscillation, generalized form of oscillator circuit, The phase shift oscillator, Hartley &Colpitt's oscillator. The Wein Bridge oscillator, Crystal oscillator, frequency stability. Regulated Power Supplies: SMPS,UPS (block diagram).	8

Books Recommended:

- 1. Millman&Halkias/ Integrated Electronics / McGraw-Hill Education India.
- 2. Sedra, and Smith,/ Microelectronic Circuits/ Oxford University Press India/ 5th Edition.
- 3. Diffenderfer Robert/Electronic Devices: Systems and Applications/Cengage Learning.

Reference materials:

- 1. Shilling & Belove Electronic Circuit/ McGraw-Hill Education India.
- 2. Streetman, B.G. Banerjee, Sanjay/ Solid State Electronic Devices/ PHI.
- 3. Salivahanan, Kumar, Suresh &Vallavraj/ Electronic Devices & Circuits/ McGraw-Hill Education India.

FUNDAMENTAL OF CIRCUITS AND NETWORKS

EC232

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	3	1	0	4

Objective: To enable the students to acquire knowledge about the basics of circuit analysis, network theorems and AC circuits.

UNIT I	Introduction	8
	Review of D.C. & A.C. circuits, DC Circuits: Current & Voltage	
	Source Transformation.	
	Mesh & Node Analysis of D.C., concept of network, active and	
	passive network	
		0
UNIT II	Network Theorem	8
	Superposition Theorem, Thevenin's Theorem, Norton's Theorem,	
	Maximum Power Transfer Theorem, Millman's Theorem, Tellegen's	
	Theorem, Dual & Duality	
UNIT III	Circuit Analysis	8
	Introduction to Graph Theory. Tree, link currents, branch voltages,	
	cut set & tie set, Mesh & Node Analysis	
UNIT IV	Time and Frequency Response of Circuits:	8
	First & second order Differential equations, initial conditions.	
	Evaluation & Analysis of Transient Steady state responses using	
	Classical Technique as well as by Laplace Transform (for simple	
	circuits only). Transfer function, Concept of poles and zeros.	
UNIT V	Two-Port Networks:	8
	Concept of two-port network. Driving point and Transfer Functions,	
	Open Circuit impedance (Z) parameters, Short Circuit admittance	
	(Y) parameters, Transmission (ABCD) parameters. Inverse	
	Transmission (A'B'C'D') parameters. Hybrid (h) parameters. Inter	
	Relationship of different parameters. Interconnections of two-port	
	networks.	

Books Recommended:

- 1. Sudhakar& S.P. Shyammohan, Circuits and Networks, Tata McGraw Hill, thirteenth reprint, 2000.
- 2. William H. Hayt, Jack E. Kemmerly& Steven M. Durbin, Engineering Circuit Analysis, McGraw Hill International, sixth edition, 2202.
- 3. Raymond A. DeCarlo& Pen-Min Lin, Linear Circuit Analysis, Oxford University Press, second edition, 2001.

ENGINEERING MATHEMATICS-III

1411201					
Pre-requisite	Co-requisite	L	Т	Р	С
None	None	3	1	0	4

Course Objectives:

The objectives of offering this course are

- 1. To develop the ability to solve problems using probability.
- 2. To introduce students to some of the basic methods of statistics and prepare them for further study instatistics.
- 3. To develop abstract and critical reasoning by studying logical proofs and the axiomatic method as applied to basic probability.
- 4. To study the basic concepts and definitions of partial differential equations.
- 5. To apply the basic series and transform for solution to partial differential equations.
- 6. To provide an application oriented computation for solving wave equation, heat equation and steady state two dimensional heatflow.
- 7. To make students familiar with complex variable.
- 8. To create zeal of working with higher mathematics in the widespread field of Biomedicalengineering.
- 9. To introduce the basic statistical dataanalysis.

Course Outcomes:

On the successful completion of this course; student shall be able to

- 1. Use a statistical package, both for numerical work and to help to analyze the data required for Biomedical engineering.
- 2. Demonstrate an understanding of basic principles of probability, and samplespaces.
- 3. Know how to calculate fundamental concepts such as the cumulative distribution function, expectations, and distributions for functions of randomvariables.
- 4. Know how to describe distributions using graphs and numerical descriptors.
- 5. Evaluate estimators, construct confidence intervals, and perform hypothesis tests in the context of a single population sample.
- 6. Set up probability models for a range of random phenomena, both discrete and continuous.
- 7. Solve partial differential equations corresponding to vibration and radiationphenomena.
- 8. Understand analytic function of a complex variable and able to apply Cauchy integral theorem and residue theorem to solve contourintegrations.
- 9. Find the sample regressionline.
- 10. Apply partial differential equations to Biomedical engineeringproblems.
- 11. Solve ordinary differential equations using series solutions; describe special functions as solutions to differential equations.

UNIT I Series Solutions and Sp order with variable co- equations of Legendre functions and their prop	ecial Functions Series solutions of ODE of 2nd efficient with special emphasis to differential e and Bessel, Legendre polynomials, Bessel erties.8
UNIT II Integral Transforms F Fourier sine and cosin transfer equations. Z-tra equations.	Courier integral, Fourier complex transform, e transforms and applications to simple heat ansform and its application to solve difference8
UNIT III Functions of a Complex and harmonic functions integral theorem, Cauch functions, Liouville's th	x Variable-I Analytic functions, C-R equations8, Line integral in the complex plane, Cauchy's ny's integral formula for derivatives of analytic eorem, Fundamental theorem of Algebra.8
UNIT IV Functions of a Comple power series, Taylor's poles, Residue theore $\int_{0}^{2\pi} f(\cos\theta, s)$ conformal mapping and	x Variable-II Representation of a function by and Laurent's series, singularities, zeros and em, evaluation of real integrals of type $sin\theta d\theta$ and $\int_{-\infty}^{\infty} f(x) dx$, bilinear transformations.
UNIT V Statistics and Probability distribution Poisson dis	ility Correlation and Regression, Binomial 8

Suggested Text / Reference Books:

- 1. Kreyszig E. (1993) : Advanced Engg. Mathematics John Willey & Sons inc.
- 2. B.S. Grewal : Higher Engineering Mathematics, Khanna Pub.
- 3. Dennis G. Zill : Advanced Engineering Mathematics, CBS Pub.
- 4. I.N. Sneddon : Partial Differential Equations, Mc Graw-Hill
- 5. Paopoulis : Signal Analysis 3 r d Edition (1988), Mc Graw-Hill
- 6. I.N. Sneddon : Use of integral transforms, Tata Mc Graw-Hill
- 7. W. Felser : Introduction to probability and its Applications. Wiley Eastern Pub.
- 8. H.K. Dass : Advanced Engineering Mathematics, (S. Chand & Company)
- 9. Lipschutz&Lipson,Schaum's Outline in Probability(2ndEd).
- 10. Colburn, Fundamentals of Probability and Statistics.
- 11. Advanced Ordinary & Partial Diff.Equation by M DRaisinghania.
- 12. Complex Variables and Applications (Brown and Churchill).
- 13. Probability and Statistics by N.G.Das.

HUMAN ANATOMY AND PHYSIOLOGY FOR ENGINEERS BE272

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	3	1	0	4

Course Objective:

- Students will be able to get an in-depth understanding of anatomy and physiology of the cardiovascular system (heart and blood vessel), the pulmonary system (lung), the renal system, the digestive system, the nervous system, the muscular system and the skeletal system.
- The discussion of these physiological systems will cover the levels of cell, tissue and organ.
- Students will be able to understand the corresponding structure function relationship of these physiological systems.
- Students will be able to relate the structure and function of the cardiovascular, circulatory, respiratory, excretory, nervous and digestive systems in humans.
- Make measurements on and interpret data of physiological processes in living systems.
- Explain mechanisms of communication, integration and homeostasis involved in physiological parameters and energy balance.
- Extend students' vocabulary of anatomical concepts and terms.
- Students will understand and postulate physiological concepts based on anatomical information
- Enable students to develop their critical reasoning skills in the field of Engineering Physiology & anatomy.

Course Outcome:

- Students will be able to get an in-depth understanding of anatomy and physiology of the cardiovascular system (heart and blood vessel), the pulmonary system (lung), the renal system, the digestive system, the nervous system, the muscular system and the skeletal system
- The discussion of these physiological systems will cover the levels of cell, tissue and organ
- Students will be able to understand the corresponding structure function relationship of these physiological systems
- Students will be able to relate the structure and function of the cardiovascular, circulatory, respiratory, excretory, nervous and digestive systems in humans
- Make measurements on and interpret data of physiological processes in living systems
- Explain mechanisms of communication, integration and homeostasis involved in physiological parameters and energy balance
- Extend students' vocabulary of anatomical concepts and terms
- Students will understand and postulate physiological concepts based on anatomical information

• Enable students to develop their critical reasoning skills in the field of Engineering Physiology & anatomy

UNIT I	Blood Vascular system	8
	Composition and functions of blood. Plasma proteins – normal values, origin and	Ū
	functions. Brief idea on Bone marrow. Formed elements of blood – origin,	
	formation, functions and fate. Hemoglobin – functions, compounds and	
	derivatives. Abnormal hemoglobin-overview. Erythrocyte sedimentation rate	
	(ESR) and its significance. Hematocrit. PCV. MCV. MCH. MCHC. Blood	
	coagulation –factors process anticoagulants Prothrombin time Clotting time	
	Bleeding time Blood groups – ABO systems and Rh factors Blood transfusion	
	Illtra structure & functions ofblood vessels (artery vein capillary) Differences	
	between artery & vein	
LINIT II	Cardio Vascular System	8
	Structure & function of Heart Anatomical position chambers of heart Blood	0
	circulation through heart Special junctional tissue of heart Cardiac cycle Heart	
	Sound Systemic & pulmonary circulation Cardiac output Blood Pressure-	
	regulation & controlling factors	
LINITE III	Muscular & Skalatal System:	Ø
	Microscopic and electron microscopic structure of skeletal smooth and cardiac	o
	mucroscopic and electron interoscopic structure of skeletal, smooth and cardiac mucroles. The	
	sarcotubular system Dad and white striated muscle fibers. Properties of muscle:	
	sate of the system. Net and write strated muscle noers. Properties of muscle.	
	excitations affects of repeated stimuli generic of tetenus onset of fetique	
	refractory pariod Muscle contraction E C Coupling Muscle fatigue Digor	
	mentic Sliding filement theory Slow & fast muscle fibers Jestonia & Jestonia	
	morus, Shung mament theory, Slow & last muscle hoers, isotonic & isometric	
	contraction.	
	Types of Bones, Structure and Composition of Bone, Classification of Joints,	
	Structure of Synovial Joint, Cartilage, Tendon, Ligament.	0
UNIT IV	Renal System	8
	Function of kidney, Anatomy & Histology of Nephron & collecting duet. Urine	
	formation (Filtration, reabsorption and secretion) Counter – current system of urine	
	concentration, Anomalies in urine concentration.	
	Digestive System	
	Organization of GI system, Digestion and Absorption, Movement of GI tract,	
	Liver, Intestine, Pancreas, Role of Enzymes in Digestion.	
	Respiratory System	
	Respiratory Pathways, Mechanism of Respiration, Respiratory membrane and	
	gaseous exchange, Lungs, Role of Lungs in Respiration and Thermoregulation.	-
UNIT V	Neuro Physiology	8
	Electron microscopic structure of nerve cell or neurons. Neuroglia. Myelinated and	
	non-myelinated nerve fibers. The resting membrane potential. The action potential.	
	Propagation of nerve impulse in different types of nerve fibers. Compound action	
	potentials. Conduction velocity of nerve impulse in relation to myelination and	
	diameter of nerve fibers. Synapses – types, structure, synaptic transmission of the	
	impulse, synaptic potentials, neurotransmitters. Autonomic nervous system -	
	Introduction. Structure of sympathetic and parasympathetic division.	
	Neuromuscular Junction – structure, events in transmission, end-plate potential,	
	post titanic potential. CNS- Brain and Spinalcord.	

Books Recommended:

- 1. Essential of Medical Physiology Anil Baran Singha Mahapatra, Current Books International
- 2. Human Physiology C.C.Chatterjee, Medical Allied Agency
- 3. Text book of Medical Physiology- Guyton
- 4. Concise Medical Physiology Chauduri
- 5. Anatomy and Physiology Ross & Wilson, Churchill Livigstone publications.

6. Modern Physiology & Anatomy for Nurses - J Gibson, Black-well Scientific Publishers

Reference materials:4. Reference material.

CYBER LAW AND INFORMATION SECURITY

CS203

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	2	1	0	3

Objective: The aim of the course is to enable students to understand the implications of Information technology and the need for regulating the cyber space and the information exchange in the information super highway.

UNIT I	Fundamentals of Cyber Law: Jurisprudence of Cyber Law, Object and Scope of the IT Act 2000, Introduction to Indian Cyber Law, Unicitral Model Law, ISP Guideline. Intellectual property issues and cyber space, Indian perspective, Overview of Intellectual property related legislation in India, Patent, Copy Right, Trademark law, Law related to semiconductor layout & design.	8
UNIT II	E-Commerce: Security Threats to E-Commerce, Virtual Organization, Business Transactions on Web, E-Governance and EDI, Concepts in Electronics payment systems, E-Cash, Credit/Debit Cards, E-Agreement, Legal recognition of electronic and digital records, E-Commerce Issues of privacy, Wireless Computing- Security challenges in Mobile devices. Digital Signatures-Technical issues, legal issues, Electronic Records, Digital Contracts, Requirements of Digital Signature System.	8
UNIT III	Investigation and Ethics: Cyber Crime, Cyber jurisdiction, Cyber crime and evidence act, Treatment of different countries of cyber crime, Ethical issues in data and software privacy, Plagiarism, Pornography, Tampering computer documents, Data privacy and protection, Domain Name System, Software piracy, Issues in ethical hacking. Internet security treats: Hacking, Cracking, Sneaking, Viruses, Trojan horse, Malicious Code & logic bombs. Introduction to biometric security and its challenges, Finger prints. Cyber crime forensic: CASE STUDY in Cyber Crime.	8
UNIT IV	Information security- Information Systems and its Importance, Role of Security in Internet and Web Services, Principles of Information Security, Classification of Threats and attacks, Security Challenges, Security Implication for organizations, Security servicesAuthentication, Confidentiality, Integrity, Availability and other terms in Information Security, Information Classification and their Roles. Introduction to Cryptography, Issues in Documents Security, Keys: Public Key, Private Key, Firewalls, Basic Concepts of Network Security, Perimeters of Network protection & Network attack, Need of Intrusion Monitoring and Detection.	8

Books Recommended:

- 1. Harish Chander "Cyber Law and IT Protection", PHI Publication, New Delhi
- 2. Merkov, Breithaupt "Information Security", Pearson Education
- 3. "Cyber Law in India" Farooq Ahmad-Pioneer books.
- 4. K. K. Singh, Akansha Singh "Information Security and Cyber law", Umesh Publication, Delhi

BIOCHEMICAL ANALYSIS AND TECHNIQUES

BE275					
Pre-requisite	Co-requisite	L	Т	Р	С
None	None	3	1	0	4

Course Objective:

This course is intended to impart the fundamental knowledge of versatile analytical & diagnostic equipments used in the healthcare system

Course Outcome:

After completion of this course the students will be able to

- 1. Identify, understand and explain the working principle of basicanalytical& diagnostic equipments used in biomedical engineering domain
- 2. Understand and explain the working principle of Blood gas analyzers andOximeters
- 3. Understand and explain the working principle of Blood cell counters and Blood pressureapparatus
- 4. Understand and explain the working principle of Blood Flowmeters
- 5. Understand and explain the working principle of Pulmonary function analyzers
- 6. Understand and explain the working principle of Endoscopy

UNIT I	Clinical equipments	8
	Principles of photometric measurement, Radiation sources, Optical	
	filters, Colorimeter, Spectrometer , Design of Monochromators,	
	Flame photometer, Atomic absorption spectrophotometer,	
	Automated biochemical analyzer- Auto analyzer,	
	Electromechanical analyzer - Chromatographs, Microscopes,	
	Scanning Electron Microscope, Transmission Electron Microscope, Centrifuge-principles and applications.	
UNIT II	Blood gas analyzers andOximeters	8
	Blood pH measurement, Blood pCO2 measurement, Blood pO2	
	measurement, a complete blood gas analyzer, Fiber optic based blood	
	gas sensors, Oximetry, Principles of oximetric measurements, Ear	
	oximeter, Pulse oximeter, Intravascular oximeter.	
UNIT III	Blood cell counters and Blood pressure apparatus	8
	Methods of cell counting, Flow cytometry, Coulter Counters,	
	automatic recognition and differential counting of cells,	
	Sphygmomanometer, Automated indirect and specific direct method of B.P. monitor.	
UNIT IV	Blood Flow meters	8
	Electromagnetic blood flow meter, Ultrasonic blood flow meter-	
	Transit time and Doppler blood flow meter, Cardiac output	
	measurement-Dye dilution method and Impedancetechnique.	
	Pulmonary function analyzers	
	Respiratory volumes and capacities, Compliance and related	

	pressure, Spirometer, Pneumo-tachometer, impedance pneumograph	
	/ plethysmograph, apnea detector.	
UNIT V	Endoscopy	8
	Basic endoscopic equipments, Fibreoptic instruments and video-	
	endoscopes, Accessories-illumination, instrument tips, instrument	
	channels, tissue sampling devices, suction traps and fluid-flushing	
	devices, Various endoscopic applications. Maintenance and Storage.	

Text Books:

- 1. R. S. Khandpur "Handbook of Bio-Medical Instrumentation", 2nd Edition, Tata McGrawHill.
- 2. J.J.Carr&J.M.Brown, "Introduction to Biomedical Equipment Technology" Pearson Education, Asia.
- 3. Cromwell, Weibell& Pfeiffer, "Biomedical Instrumentation & Measurement", Prentice Hall,India

References:

- 1. Joseph Bronzino, "Biomedical Engineering and Instrumentation", PWS Engg., Boston.
- 2. J.Webster, "Bioinstrumentation", Wiley & Sons.
- 3. Joseph D.Bronzino, "The Biomedical Engineering handbook", CRCPress.

DISASTER MANAGEMENT ES202

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	2	1	0	3

Objective: The objective of this course is to familiarize the student with basic management principles relating to disaster management and mitigation techniques.

1 1		
UNIT I	Concept of disaster management. Types of disaster and their impact: Natural and Man- Made, Like- Earthquakes, Floods, Tsunami, Droughts, Cyclones, Avalanches, Forest Fire, Terrorism related Disaster etc. Assessment of human and Economic losses.	8
UNIT II	Impact of extensive Industrialization. Impact of Global Warming and Environmental Degradation. National and global disasters.	8
UNIT III	National policy for disaster Management, Elementary Knowledge of the Disaster Management Act 2005. Types of Responses: Central, State, District Level, Peoples Community participation in Disaster Management. Post-Disaster Management and Rehabilitation measures.	8
UNIT IV	Capacity Building for meeting disasters. Long term measures for preventions of disasters. Mitigation technique/strategies: Early warning systems, Data sharing at national and international level.	8

Books Recommended:

1. Disaster management by Dr. V.K. Sethi.

2. The great Sumatra Earthquakes and Indian Ocean tsunami of December 2004- the effects of main land India and in the Andaman and Nicobar Island, published by IIT Kanpur.

- 3. Environmental management by Dr. Shakeel Ahmad
- 4. Hazards, disasters and your community, ministry of home affairs.

HUMAN VALUES & PROFESSIONAL ETHICS BM226

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	3	0	0	0

Objective:

UNIT I	Human Value Education: Understanding the need, basic guidelines, content and process for Value Education, Self Exploration - Its content and process; 'Natural	8
	Acceptance' and Experiential Validationas the mechanism for self exploration,	
	Continuous Happiness and Prosperity- A look at basic Human Aspirations, Right	
	understanding, Relationship and Physical Facilities- the basic requirements for	
	fulfillment of aspirations of every human being with their correct priority,	
	Understanding Happiness and Prosperity correctly.	
UNIT II	Introduction to Ethical Concept: Definition of industrial ethics and values, Ethical	8
01,12 11	rules of industrial worker. Values and Value Judgments. Moral Rights and Moral	U
	rules, Moral character and responsibilities. Privacy, Confidentiality, Intellectual	
	Property and the Law. Ethics as Law	
UNIT III	Professional Responsibility: The basis and scope of Professional Responsibility,	8
	Professions and Norms of Professional Conduct, Ethical Standards versus	-
	Profession, Culpable mistakes, the Autonomy of professions and codes of ethics.	
	Employee status and Professionalism. Central Professional Responsibilities of	
	Engineers: The emerging consensus on the Responsibility for safety among	
	engineers, hazards and risks.	
UNIT IV	Engineers Ethics: Senses of 'Engineering Ethics' - variety of moral issues - types of	8
	inquiry - moral dilemmas - moral autonomy - Kohlberg's theory - Gilligan's theory	
	- consensus and controversy - Models of Professional Roles - theories about right	
	action - Self-interest - customs and religion - uses of ethical theories. Valuing Time	
	– Co-operation – Commitment.	
UNIT V	Global Issues: A Glimpse of Life Stories: Life story of Prophet Mohammad,	8
	Mahatma Gandhi, Swami Vivekanand, Marie Curie and Steve Jobs.	
	Multinational corporations - Environmental ethics - computer ethics - weapons	
	development - engineers as managers-consulting engineers-engineers as expert	
	witnesses and advisors -moral leadership	

Reference Readings:

<u>Text Book</u>

- 1. R R Gaur, R Sangal, G P Bagaria, 2009, A Foundation Course in Value Education
- 2. Mike Martin and Roland Schinzinger, "Ethics in Engineering", McGraw-Hill, New York 1996.
- 3. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.

Relevant CDs, Movies, Documentaries & Other Literature:

- 1. Value Education website, http://www.uptu.ac.in
- 2. Story of Stuff, http://www.storyofstuff.com
- 3. Al Gore, An Inconvenient Truth, Paramount Classics, USA

HUMAN ANATOMY AND PHYSIOLOGY LAB BE274

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	0	0	2	1

Objectives:

- 1. The objective of Engineering Physiology & Anatomy Laboratory class is to understand the practical aspects of the body's internal organs and how they function.
- 2. Provide an active learning environment to teach the basic principles of human physiology & anatomy.
- 3. Teach students the principles of experimental documentation in a laboratory notebook.
- 4. Provide students with a hands on opportunity to use commonly used physiological variables measuring equipments.
- 5. Promote and encourage team work and collaboration among students in the lab.
- 6. Students are encouraged to create additional test conditions and run additional experiments during the lab time that extend from the guided lesson plan.

Outcome:

- 1. Develop a visual knowledge of body structure at the cellular, tissue, organ, & system levels.
- 2. Understand the gross & microscopic approach to Anatomy & Physiology.
- 3. Provide the students with all necessary lab tools such as anatomical models, histology slides as well as experimental & physiological problems that promote the critical understanding of the human body.
- 4. Familiarize the students with a variety of lab assignments, help visualize most of the anatomical models of all the body systems that have been covered in the Anatomy & Physiology course.

Experiment 1	Study on Compound Microscope.	4
Experiment 2	Identification of fixed histological slides: Cerebellum, Cerebral	4
	Skin, Tongue, Liver.	
Experiment 3	Hemoglobin estimation.	2
Experiment 4	Determination of blood pressure.	2
Experiment 5	Blood film making & identification of different blood corpuscle.	2
Experiment 6	ECG wave identification.	2
Experiment 7	DC of WBC.	2
Experiment 8	Determination of Blood Group (ABO; Rh).	2
Experiment 9	Measurement of Bleeding Time (BT) & Clotting Time (CT).	2

ELECTRONICS CIRCUITS LAB

EC233

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	0	0	2	1

Course Objective:

- 1. To understand application of p-n junction Diode, Zener diode, Rectifieretc.
- 2. To analyze the performance of multistage amplifier and poweramplifier
- 3. To study and analyze the performance of multi-vibrators
- 4. To understand application of OP AMP

Course Outcome:

- After learning this subject, students will be able to
- 1. Design voltage regulator using ZenerDiode
- 2. Design a DC voltage supplycircuit
- 3. Design and analyze amplifier circuit usingtransistor
- 4. Design different Wave Form generatorcircuit
- 5. Design and analyze different circuits using OPAMP
- 6. Design different filter circuits and study theirperformance

List of Experiments:

- 1. Study of Diode as clipper & clamper
- 2. Study of Zener diode as a voltageregulator
- 3. Study of ripple and regulation characteristics of full wave rectifier without and with capacitorfilter
- 4. Study of characteristics curves of B.J.T
- 5. Construction of a two-stage R-C coupled amplifier & study of it'sgain.
- 6. Study of class A & class B poweramplifiers.
- 7. Study of timer circuit using NE555 & configuration for monostable&astablemulti-vibrator.
- 8. Construction & study of RC phase shiftoscillator.
- 9. Study of Switched Mode Power Supply & construction of a linear voltage regulator using regulator ICchip.
- 10. Construction of a simple function generator usingIC.

CIRCUITS THEORY LABORATORY

EC249

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	0	0	2	1

Course Objective

- 1. To familiarize students MATLAB Software and its application in circuitanalysis.
- 2. To introduce students in evaluating electrical parameters in resonant circuits usingMATLAB.
- 3. To implement MATLAB in verification of Networktheorems.
- 4. To familiarize students in measuring electrical parameters in transient circuits usingMATLAB.
- 5. To introduce students with the generation of various waveforms usingMATLAB.
- 6. To apply MATAB in evaluating impedance and admittance parameters in acircuit.
- 7. To familiarize students with poles & zeros concepts and the techniques in evaluating thesame.
- 8. To enumerate application of Laplace transform and its inverse in analysis of circuits.

Course Outcome

After completion of this course the students will be able to

- 1. Describe Analyze and Design series and parallel RLC circuits usingMATLAB.
- 2. Analyze circuits using Node Voltage & Mesh Current Analysis in electrical networks usingMATLAB.
- 3. Verify and analyze Network Theorems to electrical networks usingMATLAB.
- 4. Understand Describe, Analyze and Design Graph and Trees for a given network and solve related problems using MATLAB.
- 5. Understand Analyze and Design Coupled Circuits and solve related problem usingMATLAB.
- 6. Understand, Describe and Analyze the Transients in electrical networks and solve related problems usingMATLAB
- 7. Implement Laplace Transform and its Inverse transform on various waveforms usingMATLAB

Implementation of Following Experiments using Software (e.g. MATLAB/Pspice) or Hardware

- 1. Characteristics of Series & Parallel Resonantcircuits
- 2. Verification of NetworkTheorems
- 3. Transient Response in R-L & R-C Networks ; simulation /hardware
- 4. Transient Response in RLC Series & Parallel Circuits & Networks; simulation /hardware
- 5. Determination of Impedance (Z), and Admittance (Y) parameters of Two-portnetworks
- 6. Generation of periodic, exponential, sinusoidal, damped sinusoidal, step, impulse, and Rampsignals.
- 7. Representation of Poles and Zeros in s-plane, determination of partial fraction expansion ins-domain.
- 8. Determination of Laplace Transform, different time domain functions, and Inverse LaplaceTransformation.

STUDY & EVALUATION SCHEME B. TECH. Biomedical Engineering (with effect from 2021-2022)

2nd Year

4th Semester

				Р	Periods Evaluation S			ation Scheme	cheme										
S No	Course Category	Subject Code	Name of the Subject	and Credits		and Credits		and Credits		and Credits		and Credits		nd Sessio edits (CA		Sessional (CA) (ESE)		(ESE)	Subject Total
				L	Т	P	С	СТ	TA	Total									
1.	DC	BE275	Biomechanics	3	1	0	4	40	20	60	40	100							
2.	DC	BE276	Biomedical Signals and Systems	3	1	0	4	40	20	60	40	100							
3.	DC*	EC235	Digital Logic circuits for Clinical Engineers	2	1	0	3	40	20	60	40	100							
4.	DC*	EC239	Biomedical Sensors and Measurement	2	1	0	3	40	20	60	40	100							
5.	DC	BE277	Biomaterials and Artificial Organs	3	1	0	4	40	20	60	40	100							
6.	ESA	BM227	Management concepts in engineering	2	1	0	3	40	20	60	40	100							
			Practical	S															
7	DC*	EC237	Digital Logic Lab	0	0	2	1	40	20	60	40	100							
8	DC*	EC238	Bio Instrumentation Lab	0	0	2	1	40	20	60	40	100							
9	DC	BE278	Biomaterials & Biomechanics Laboratory	0	0	2	1	40	20	60	40	100							
		Tot	al	15	6	6	24	360	180	540	360	900							
* A	n inter-discip	olinary pro	gram offered by the Dep	artn	ner	nt c	of B	ioen	gine	ering i	n asso	ciation							

with the Department of Electronics and Communication Engineering.

 $\begin{array}{ccc} L-Lecture & T-Tutorial & P-Practical & C-Credits & CT-Class Test & TA \\ -Teacher Assessment & \end{array}$

Sessional Total (CA) = Class Test + Teacher Assessment

Subject Total = Sessional Total (CA) + End Semester Examination (ESE)

BS – Basic Sciences, **DC** – Departmental Core, **HM** – Humanities, **OE** – Open Elective, **DE** – Departmental Elective,

ESA – Engineering Sciences & Arts (Foundation Course & Engineering Courses)

BIOMECHANICS

BE275

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	3	1	0	4

Course Objective:

- 1. To describe the fundamental of biomechanics.
- 2. To Study the deformability, strength, visco elasticity of bone and flexible tissues, modes of loading and failure.
- 3. To describe the types and mechanics of skeletal joints.
- 4. To describe movement precisely, using well defined terms (*kinematics*) and also to consider the role of force in movement (*kinetics*).
- 5. To teach students the unique features of biological flows, especially constitutive laws and boundaries.
- 6. To teach students approximation methods in fluid mechanics and their constraints.
- 7. To consider the mechanics of orthopedic implants and joint replacement, mechanical properties of blood vessels and Alveoli mechanics

Course Outcomes:

After completion of the course student will be able to

- 1. Understand and describe the properties of blood, bone and soft tissues like articular cartilage tendons and ligaments.
- 2. Gain broad knowledge about the mechanics of moving systems and familiarity with human anatomy to competently analyze gross movement of the human body.
- 3. Be able to computationally analyze the dynamics of human movement from the most commonly used measurement devices in the field, such as motion capture and force platform systems.
- 4. Use knowledge gained to competently interpret the current understanding of human movement and present recommendations for further study.

UNIT I	Introduction to Biomechanics	8
	Review of the principles of mechanics, Vector mechanics- Resultant forces	
	of Coplaner & Noncoplaner and Concurrent & non-concurrent forces,	
	parallel force in space, Equilibrium of coplanar forces, Newton's laws of	
	motion, Work and energy, Moment of inertia.	
UNIT II	Tissue Biomechanics	8
	Hard Tissues: Bone structure & composition mechanical properties of	
	bone, cortical and cancellous bones, viscoelastic properties, Maxwell &	
	Voight models – anisotropy. Electrical properties of bone, type of fractures,	
	biomechanics of fracture healing.	
	Soft Tissues: Structure and functions of Soft Tissues: Cartilage, Tendon,	
	Ligament, and Muscle; Material Properties: Cartilage, Tendon, Ligament,	
	and Muscle; Modeling: Cartilage, Tendon, Ligament, and Muscle.	
UNIT III	Joints Biomechanics: Skeletal joints, forces and stresses in human joints,	8
	Analysis of rigid bodies in equilibrium, free body diagrams, types of joint,	
	biomechanical analysis of elbow, shoulder, hip, knee and ankle.	
	Movement Biomechanics	
	Gait analysis, body & limbs: mass & motion characteristics actions, forces	

	transmitted by joints. Joints forces results in the normal & disable human body, normal & fast gait on the level. Patterns: Puch/Throw Continuum Biomechanics of push - like motions	
	Biomechanics of throw - like motions.	
UNIT IV	Cardiac & Respiratory Mechanics	8
01122 21	Cardiovascular system, Mechanical properties of blood vessels: arteries,	0
	arterioles, capillaries, and veins. artificial heart valves, biological and	
	mechanical valves development, testing of valves.	
	Alveoli mechanics, Interaction of blood and lung, P-V curve of lung,	
	Breathing mechanism, Airway resistance, Physics of lung diseases.	
	Biofluid Mechanics	
	Newton's law, stress, strain, elasticity, Hooke's law, viscosity, Newtonian	
	fluid, Non- Newtonian fluid, viscoelastic fluids, Vascular tree. Relationship	
	between diameters, Velocity and pressure of blood flow, Resistance against	
	flow.	
UNIT V	Implant Mechanics: General concepts of Implants, classification of	8
	implants, Soft tissues replacements and Hard tissue replacements,	
	basic consideration and limitation of tissue replacement, Design of	
	orthopedic implant, specifications for a prosthetic joint,	
	biocompatibility, requirement of a biomaterial, characteristics of	
	different types of biomaterials, manufacturing process of implants,	
	fixation of implants.	

Text Books

- 1. R. M. Kennedy, A textbook of Biomedical Engineering, GTU, 2010
- 2. Richard Shalak & Shu Chien, Handbook of Bioengineering,
- 3. Sean P. Flanagan, Flanagan, Biomechanics: A case based Approach, Jones & Bartlett Publishers, 2013
- 4. Y. C. Fung, Yuan-Cheng Fung, Biomechanics: mechanical Property of living Tissue, Springer, 1996.
- 5. Carol A. Oatis, The Mechanics and Patho-mechanics of Human Movement, Lippincott Williams & Wilkins, 2010
- 6. Sean P. Flanagan, Flanagan, Biomechanics: A Case Based Approach, Jones & Bartlett Publishers, 2013.

Reference Books

- 1. Prof. Ghista, Biomechanics, Private Publication UAF, 2009
- 2. White & Puyator, Biomechanics, Private publication UAE, 2010

BIOMEDICAL SIGNALS AND SYSTEMS

Pre-requis	ite Co-requisite	L	Т	Р	С
None	None	3	1	0	4
Objective: To purpose of learning this course on biomedical signals and systems for learning students is to acquire knowledge for analyzing the continuous time discrete till applications.					
UNIT I	Basics of signals				8
	Signal Classification; continuous time ve	ersus discrete	time, periodi	c versus	
	signals: Sinusoidal exponential unit	impulse uni	t sten unit	Ramp	
	Mathematical operations on signals; addition, multiplication, convolution, con	scaling, fold relation	ling, time	shifting,	
UNIT II	Basics of systems				8
	Classification of systems: static and dynamic systems, timeinvariant and				
	time variant, linear and nonlinear systems, causal and non-causal systems,				
	stable and unstable systems, Linear Time invariant systems (LTI)				
	differential equation	iei iunetion,	constant co	cificicit	
UNIT III	Analysis of Continuous Time Signals a	nd System			10
	Fourier series analysis; complex formFourier	urier transform	n; properties		
	Relation between Laplace transform	and Fourier	transform,	Fourier	
	transform application to LTI systems				
UNIT IV	Analysis of discrete Time Signals and	System		c	6
	Sampling Theorem; ideal sampling	and reconstr	ructionZ tra	instorm;	
	in z transformRelation between Z tr	- representation	DTFT 7 tr	ansform	
	application to LTI systems	unstorm und		unsionin	
UNIT V	Application to Bio Signals				8
	Introduction, Characteristics of Bi	o–Signals, 7	Types of	Signals,	
	Measurement, Transformation and redu	ction, Applic	ation areas of	of Bio -	
	Signals analysis – EEG, ECG, Phonocare	liogram,			

Books Recommended:

1. Allan V. Oppenheim, Alan S. Willsky and S. Hamid, "*Signals and systems*", Prentice Hall of India Pvt.Ltd, 2nd edition, 1997.

Reference materials:

- 1. M.J. Roberts, "Signals and Systems: Analysis using transform methods & MATLAB" Tata McGraw Hill, 2^{md}edition, 2007.
- 2. Suresh R, Devashayam, "Signals and Systems in Biomedical Engineering", Springer US, 2medition,

DIGITAL LOGIC CIRUITS FOR CLINICAL ENGINEERS

EC235

Pre-requis	ite	Co-requisite	L	Т	Р	С
None		None	2	1	0	3
Objective:	To impart k	nowledge of digital logic	circuits for	and its app	lication ir	the bio-
medical fie	ld.					
UNIT I	Boolean Al	gebra and Logic gates				8
	Review of	Number system: Binary,	Octal, He	xadecimal	number	
	system, Con	nplements				
	Logic gates,	Boolean algebra postulate	s and theore	ems,		
	Boolean fur	nction minimization:, Kar	naugh map,	QuineMcC	Cluskey	
UNIT II	Combinatio	onal Circuit				8
	Analysis and design of combinational circuit, Half adder and full				nd full	
	adder circuits, parallel adder /Subtractor, magnitude comparator					
	Encoder and decoder, Multiplexer and de-multiplexer,					
UNIT III	Sequential	Circuit				8
	Latches, Flip	p Flops; JK, D,T, Characte	ristics table	and equation	n	
	Analysis and	d design of clocked sequen	tial circuits			
	4 bit shift re	gister				
-	Counters: M	Iodulo N counter, ring cou	nter, ripple o	counter		
UNIT IV	Logic famil	ies and Memory				8
	Logic family	y characteristics and their of	comparison,			
	Types of Me	emory: RAM, ROM, PLD	S			
	Medical Ap	plications				
	Digital Bloc	od pressure Monitor,				
	Digital Bloc	od Glucose monitor,				
	Digital therr	nometer,				
	Heart rate N	vionitor				
	Digital steth	loscope,				
	Hearing Aid	l				

Books Recommended:

- M.Morris Mano and Michael D.Ciletti, "Digital design", Pearson, 5th edition 2013.William H. Hayt, Jack e. Kemmerly& Steven M. Durbin, Engineering Circuit Analysis, McGraw Hill International, sixth edition, 2202.
- Thomas L. Floyd, "Digital fundamentals", Pearson, 11th edition 2015.
 <u>Reference materials:</u>
- 1. https://www.nxp.com/applications/solutions/internet-of-things/smartthings/healthcare:HEALTHCARE-MEDICAL

BIOMEDICALSENSORS AND MEASUREMENT

EC239

Pre-requisite	Co-requisite	L	Τ	Р	С
None	None	2	1	0	3

Objective: To impart adequate knowledge about the sensors and measuring instruments used for measurement and detection of physical quantities.

UNIT I	Standards and Measuring errors Scientific notations and metric prefixes. SI electrical units, SI temperature scales, Other unit systems, dimensions and standards. Measurement Errors: Gross error, systematic error, absolute error and relative error, accuracy, precision, resolution and significant figures, Measurement error combination, PMMC instrument, Galvanometer, Conversion to ammeter and voltmeter	8
UNIT II	Transducer Classification of transducers and characteristics for selection of transducers, Resistive transducers, Inductive transducers, Capacitive transducers, Piezoelectric effect transducer, Thermoelectric Transducers	8
UNIT III	Multimeter and CRO Digital voltmeter systems, Digital multimeter CRT, Wave Form Display, Time Base, Dual Trace Oscilloscope, measurement of voltage, frequency and phase by CRO, DSO, DSO applications.	8
UNIT IV	Medical Applications of Sensors: Biosensors: Principles and, classification,Optical biosensors for measurement of blood glucose level, Smart sensor, Electronic nose.	8

Books Recommended:

- 1. David A. Bell, "Electronic Instrumentation and Measurements", Oxford University Press
- Sawhney A.K, "A Course in electrical and electronic measurements and instrumentation", DhanpatRai & Co (P) Ltd, Educational and Technical Publishers, 19th Revised edition 2011 Reference materials:
- 1. Patranabis D, "Sensors and transducers", PHI, 2nd edition, 2004.
- 2. R.S. Khanpur, "Handbook of Biomedical Instrumentation" Tata McGraw Hill
- 3. H.E. Thomas, "Handbook of Biomedical Instrumentation and Measurement" Restone Publishing Company

BIOMATERIALS AND ARTIFICALS ORGANS

BE277

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	3	1	0	4

Course Objectives:

- The student would be able to learn characteristics and classification of Biomaterials.
- Understand the characteristics of different metals and ceramics used as biomaterials.
- Understand polymeric materials, composites and combinations that could be used as a tissue replacement implants.
- Students should be able to understand how to develop artificial organ using these materials.
- Instill a fundamental understanding of the properties and applications of biomaterials, both natural and synthetic that are used in contact with biological systems in the area of various tissues and organ replacement.
- To acquaint students with the interactions between biomaterials and the human body that lead to failure of devices.
- This course presents a balanced perspective on the evolving discipline of Biomaterials Science by including information on hard biomaterials and soft biomaterials, orthopedic ideas, cardiovascular concepts, ophthalmologic ideas, and dental issues.
- Demonstrate in-depth knowledge of the mechanical and biological properties of both natural and synthetic biomaterials used in implant design and artificial tissue or organ making.
- Describe the role of adsorbed proteins and cells in the tissue response to biomaterials.
- Demonstrate an understanding of the host response to implant biomaterials and be able to compare the responses to different materials.
- Describe the methods of testing for biomaterials biocompatibility.
- Distinguish the events that lead to the degradation of materials in the biological environment.
- Demonstrate an in-depth knowledge of the application of biomaterials, both natural and synthetic, in implant design and artificial tissue or organ making.
- Demonstrate an understanding of implant failure from a biological perspective.
- Appreciate the complex mechanical and biological interactions between biomaterials and biological systems.
- Gain a solid appreciation for the special significance of the word biomaterial as well as the rapid and exciting evolution and expansion of biomaterials science and its applications in health care.

Course Outcome:

- Identify and understand the main terms largely used in biomaterials literature, basic properties of various biomaterials, correctly associate terms with processes/phenomena, and be able to correlate related events.
- Able to design basic tissue or organ replacement implants using clear understanding of Biomaterials as tools of Biomedical Implant Engineering.
- They will be able to apply knowledge in the design of various biocompatible implants and artificial organ to develop and improve Health Care Service and will be able to serve mankind and society.
- Include a balance of fundamental biological concepts, materials science background, medical/clinical concerns, as well as coverage of biomaterials past, present, and future.
- Develop an ability to identify, formulate, and solve engineering problems, particularly in the context of biomaterials selection and design.
- An ability to understand environmental considerations and sustainable engineering solutions in the field of Biomaterials.

Develop an ability to understand professional ethics and legal issues related to ٠ Biomaterials, Implant design and artificial tissue grafting. Develop an ability to function effectively as an individual

A nhar in di o to

• L	severop an ability to function effectively as an individual and a member in diver	se team.
UNIT I	Introduction: Definition of biomaterials, requirements of biomaterials,	8
	classification of biomaterials, Comparison of properties of some common	
	biomaterials. Effects of physiological fluid on the properties of	
	biomaterials. Biological responses (extra and intra-vascular system).	
	Surface properties of materials physical properties of materials mechanical	
	nronerties	
	Metallic implant materials: Stainless steel Co-based alloys Ti and Ti-	
	hased alloys Importance of stress- corrosion cracking Host tissue reaction	
	with biometal corrosion behavior and the importance of passive films for	
	tissue adhesion. Hard tissue replacement implant: Orthopadic implants	
	Dental implants Soft tissue	
	replacement implants: Percutaneous and skin implants. Vascular implants	
	Heart valve implants. Tailor made composite in medium.	
UNIT II	Polymeric implant materials: Polyolefins, polyamides, acrylic polymers,	8
	fluorocarbon polymers, silicon rubbers, acetals, (Classification according to	0
	thermosets thermonlastics and elastomers) Viscoelastic behavior: creen-	
	recovery stress relaxation strain rate sensitivity. Importance of molecular	
	structure hydrophilic and hydrophobic surface properties migration of	
	additives (processing aids) aging and environmental stress cracking	
	Physiochemical characteristics of biopolymers Biodegradable polymers for	
	medical purposes Biopolymers in controlled release systems Synthetic	
	neulear purposes, Dioporymers in controlled release systems. Synthetic	
	Coromic implant materials: Definition of biocoromics. Common types of	0
	biogenemics: Aluminium oxides, Class caremics, Corbons, Bioreserbelle	o
	ond bioactive according. Interactions of when resistance and law frosture	
	and bloactive cerannes. Importance of wear resistance and low fracture	
	(or a commis/kang tiggue reaction)	
	(e.g. ceramic/bone tissue reaction).	
	Composite implant materials: Mechanics of improvement of properties by	
	incorporating different elements. Composite theory of fiber reinforcement	
	(short and long fibers, fibers pull out). Polymers filled with osteogenic	
	fillers (e.g. hydroxyapatite). Host tissue reactions.	0
UNITIV	Biocompatibility & toxicological screening of biomaterials: Definition of	8
	biocompatibility, blood compatibility and tissue compatibility. Toxicity	
	tests: acute and chronic toxicity studies (in situ implantation, tissue culture,	
	haemolysis, thrombogenic potential test, systemic toxicity, intra-cutaneous	
	irritation test), sensitization, carcinogenicity, mutagenicity and special tests.	
	Sterilization techniques: ETO, gamma radiation, autoclaving. Effects of	
	sterilization on material properties.	
UNIT V	Testing of biomaterials/Implants: In vitro testing (Mechanical testing):	8
	tensile, compression, wears, fatigue, corrosion studies and fracture	
	toughness. In-vivo testing (animals): biological performance of implants.	
	Ex- vivo testing: in vitro testing simulating the in vivo conditions.	
	Standards of implant materials.	

Books Recommended:

- 1. J B Park, Biomaterials Science and Engineering, Plenum Press, 1984.
- 2. Sujata V. Bhat, Biomaterials, Narosa Publishing House, 2002.
- 3. Bronzino JD, ed. The Biomedical Engineering Handbook, Second Edition, Vol-II, CRC Press

Reference materials:

- 1. Jonathan Black, Biological Performance of materials, Marcel Decker, 1981
- 2. C.P.Sharma & M.Szycher, Blood compatible materials and devices, Tech.Pub.Co. Ltd., 1991.
- 3. Piskin and A S Hoffmann, Polymeric Biomaterials (Eds), Martinus Nijhoff Publishers.
- 4. Eugene D. Goldbera, Biomedical Ploymers, Akio Nakajima.
- 5. L. Hench & E. C. Ethridge, Biomaterials An Interfacial approach.
- 6. Buddy D.Ratner, Allan S. Hoffman, Biomaterial Sciences Int. to Materials in Medicine
- 7. Frederick H. Silver, Biomaterials, Medical devices and Tissue Engineering, Chapman & Hall

MANAGEMENT CONCEPTS IN ENGINEERING BM227

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	2	1	0	3

Objective: The objective of this course is to provide fundamental knowledge about management strategies and leadership qualities required in managing technical manufacturing organizations.

UNIT I	CONCEPTS OF MANAGEMENT: Definition, Nature, Scope and significance of Management, the evolution of Management thought, contributions of F.W. Taylor, Henri Fayol and Chester Bernard to Management Science. Functions of Management, Values and Ethics in Management.	8
UNIT II	PLANNING: Definition, Objectives, Steps of Planning, The process and techniques of Decision Making, Strategies and policies. Management by objectives.	8
UNIT III	ORGANISATION & DIRECTING: Definition, Line and Staff relationship. Delegation and Decentralization, Committee system, Issues in managing Human factors, Motivation: theories of Motivation. Leadership: Concept, Nature, Styles. Decision making: Concept, Nature, Process, Tools & techniques	8
UNIT IV	 CONTROLLING: Definition and Elements Control Techniques, Coordination, Determinants of an Effective Control System, Managerial Effectiveness. ECONOMIC & FINANCIAL ANALYSIS: National Income, Inflation, GDP & Interest rates. Financial Function & Goals, Financial Statement & Ratio Analysis. 	8

Books Recommended:

- 1. Stoner Freeman & Gilbert Jr, Management, Prentice Hall of India, 6th Edition.
- 2. Koontz, Principles of Management, Tata Mc Graw Hill, Ist Edition 2008.
- 3. Robbins & Coulter, Management, Prentice Hall of India, 8th Edition.
- 4. Robbins S.P. & Decenzo David A., Fundamentals of Management: Essential Concepts and Applications, Pearson Education.
- 5. Hillier Frederick S. & Hillier Mark S., Introduction to Management Science: A Modeling and Case Studies Approach with Spreadsheets, Tata McGraw Hill, 2008

DIGITAL LOGIC LAB

EC237

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	0	0	2	1

Course Objective:

- 1. To familiarize students with different Digital ICs corresponding to different logicgates
- 2. To show the working operation of basic logic gates & Universal logicgates.
- 3. To familiarize students with the design of combinational circuits.
- 4. To introduce students with basic components of sequential circuits.
- 5. To familiarize students with the design of sequential circuits.

Course Outcome:

- 1. Understand and describe Digital ICs of different logicgates.
- 2. Describe, design and analyze combinationalcircuits.
- 3. Describe, design and analyze sequential circuits.

List of Experiments

- 1. Familiarization with different digitalICs.
- 2. Realization of different gates like AND, OR, NOT, NAND, NOR, EX-OR and EX-NOR.
- 3. Realization of basic gates using universal logicgates.
- 4. Grey Code to Binary Code Conversion and ViceVersa.
- 5. Code Conversion between BCD and Excess-3
- 6. Four-bit parity generator and comparatorcircuits.
- 7. Construction of simple Decoder and Multiplexer circuits using logic gates.
- 8. Construction of simple arithmetic circuits-Adder, Subtractor.
- 9. Design of combinational circuit for BCD to decimal conversion to drive 7-segment display usingmultiplexer.
- 10. Realization of RS-JK and D flip-flops using Universal logicgates.
- 11. Realization of Universal Register using JK flip-flops and logicgates.
- 12. Realization of Universal Register using multiplexer and flip-flops.
- 13. Realization of Asynchronous Up/Downcounter.

BIOMEDICAL INSTRUMENTATION LAB

EC238							
Pre-requisite	Co-requisite	L	Т	Р	С		
None	None	0	0	2	1		

Course Objective

- 1. To familiarize students with the operation of DC to DC converter & itsapplication.
- 2. To introduce students with timer circuits & heart-ratemeter.
- 3. To emphasis on the study of EMG, ECG, EEG & PCG waveform & analysis.
- 4. To familiarize students with the design of bio-potential amplifiers.
- 5. To introduce students with basic operation of X-ray system.
- 6. To introduce students on the study of isolation ofbio-signals.

Course Outcome

After completion of this course the students will be able to

- 1. Understand and implement isolation techniques in designing biomedicalinstruments.
- 2. Measure and Analyze EMG, ECG, EEG and PCG waveforms in diagnostic point of views
- 3. Measure and Analyze QRS components from diagnostic point of view.
- 4. Design and analyze the characteristics of Bio-potentialamplifiers.
- 5. Understand & describe the basic operation of an X-raysystem.
- 6. Measure heart rate meter using F-VConverter.
- 7. Measure ON-Time & OFF-Time delay of a waveform using Timercircuit.

List of experiments:

- 1. Power isolation: isolation transformer and DC-DCconverters
- 2. Timer circuits: ON delay and OFF delaystudy
- 3. Measurement of heart rate using F-Vconverter
- 4. ECG processing and analysis
- 5. EMG processing and analysis
- 6. EEG processing and analysis
- 7. Detection of QRS component from ECGsignals
- 8. Study on InstrumentationAmplifier-Design
- 9. Study on X-ray radiography systems / X-raysimulator
- 0. Characterization of bio-potential amplifier for ECG & EMGsignals
- 1. PCG processing and analysis / electronics stethoscope
- 2. Isolation of bio-signal (EMG /ECG)